Científicos hallan mecanismo que puede ser esencial para regenerar órganos

Los investigadores detectaron un proceso en el que, mediante señales mecánicas, las células responden y se multiplican para regenerar tejidos con algún daño.

El estudio apunta una nueva vertiente para el desarrollo de medicamentos. (Freepik)
Editorial Milenio
Madrid /

Un equipo internacional de investigadores ha logrado identificar un mecanismo que resulta esencial en el crecimiento y el desarrollo de los órganos, de manera que lo han manipulado para controlar el crecimiento y potencialmente la regeneración de los órganos.

Lo han comprobado científicos españoles del Centro Nacional de Investigaciones Cardiovasculares (CNIC) y se trata, según sus autores, de un hallazgo muy relevante en medicina aplicada ya que, en numerosas patologías, como la aterosclerosis, el cáncer o la fibrosis, se produce una entrada masiva y no deseada de una proteína (la llamada YAP) al núcleo celular.

El estudio, publicado en Nature Communications, apunta una nueva vertiente para el desarrollo de medicamentos orientados a bloquear la entrada de esa proteína.

El CNIC ha señalado que el crecimiento y la regeneración de los órganos requiere de la entrada al núcleo celular de las proteínas que tienen la función de activar los genes necesarios para que se desempeñen dichos procesos.

Liderados por Miguel Ángel del Pozo Barriuso, director del Grupo de Mecanoadaptación y Biología de Caveolas del CNIC, y Asier Echarri Aguirre, los investigadores han logrado identificar el mecanismo o "lanzadera" que introduce esas proteínas en el interior del núcleo en respuesta a estímulos mecánicos, como las fuerzas hemodinámicas generadas por el flujo vascular en el interior de las arterias, la rigidez tumoral, o la propia locomoción mientras una persona camina o practica deporte.

La mayoría de procesos biológicos requiere de la entrada al núcleo celular de ciertos factores clave para su regulación; por ejemplo, durante el desarrollo, durante la regeneración de tejidos tras un traumatismo o infarto, o en las enfermedades cardiovasculares o el cáncer, se producen señales mecánicas a las que las células responden multiplicándose para regenerar el tejido dañado, o reorganizando el medio que las rodea.

Para ello, según los investigadores del CNIC, son clave ciertos factores que se activan por estas señales mecánicas y entran en el núcleo, donde encienden o activan los genes necesarios para promover el crecimiento o la regeneración del órgano en cuestión.

“Uno de los más importantes es la proteína YAP”, ha explicado Pozo Barriuso, y ha precisado que su entrada al núcleo es un proceso muy controlado que "sólo debe producirse cuando existe una necesidad determinada" y esa entrada se produce a través de puertas o poros nucleares que, para poder ser atravesadas, necesitan de una "lanzadera”.

Lo que hace especialmente interesante esa proteína (YAP) es que, ante un incremento en la fuerza mecánica a la que está sometido el tejido, “se activa y entra en el núcleo, donde enciende varios genes que determinan el crecimiento del órgano en cuestión”, ha explicado Asier Echarri Aguirre.

Aunque esa proteína había sido ya ampliamente estudiada debido a su implicación en la regeneración de órganos, o en patologías tan importantes como la aterosclerosis y el cáncer, la vía de entrada al núcleo de la célula y la "lanzadera" que utiliza eran desconocidas.

Ahora, los científicos del CNIC han identificado esta "lanzadera", llamada Importina-7, a la que YAP se sube para entrar en el núcleo de la célula y así inducir el crecimiento celular y, finalmente, del tejido.

Los investigadores también han identificado una nueva diana para el desarrollo de medicamentos orientados a bloquear esa lanzadera, ya que lograron bloquear el sobrecrecimiento de órganos de mosca simplemente reduciendo los niveles de la “lanzadera” impidiendo que la proteína entrara en el núcleo celular.

En este trabajo han participado, además de investigadores del CNIC, científicos del Centro de Investigación Biomédioca en Red de Enfermedades Cardiovasculares, del Max Planck Institute for Biophysical Chemistry de Alemania y el Instituto Cajal de Madrid.

ROA

LAS MÁS VISTAS

¿Ya tienes cuenta? Inicia sesión aquí.

Crea tu cuenta ¡GRATIS! para seguir leyendo

No te cuesta nada, únete al periodismo con carácter.

Hola, todavía no has validado tu correo electrónico

Para continuar leyendo da click en continuar.